Mitigation costs and potentials in agriculture

Stéphane De Cara

INRA, UMR Économie Publique (INRA/INA-PG), Grignon, France

30 March 2006 - CIHEAM-IAM - Barcelona, Spain

Objectives of the lecture

- To provide an overview of the economic concepts used to address the issue of GHG emissions in agriculture
- To highlight the importance of marginal abatement costs and marginal abatement costs heterogeneity
- To present a modelling approach used to assess marginal abatement costs in EU agriculture
- To discuss the results from this modelling approach and their policy implications

Part I

Methodology for sector evaluation

Methodology for sector evaluation: Outline

- Externalities and economic instruments
 - Externalities
 - Instruments
 - Abatement costs
- Modelling approaches to assess abatement costs in agriculture
 - Research questions
 - Literature review
- Concluding remarks

Regulation of environmental externalities: An economic approach

- Emissions of pollutants as an externality.
- Externalities are characterized by the fact that the actions of one agent directly affect the environment of another agent without being priced.
- Prices do not convey the "right" signal: Environmental "goods" ("bads") are produced in too small (large) quantities.
- In the presence of externalities, general market equilibria are inefficient (The First Theorem of Welfare Economics does not hold).

Externalities: A simple illustration

- Two agents (A and B), one good.
- Agent A produces the good in quantity q.
- Production of the good causes an emission z(q):

$$z(0) = 0, z'(.) > 0, z''(.) \ge 0$$

Agent A can reduce his/her emissions. Abatement is denoted

$$a = \overline{z} - z$$

• Reduction in emissions is obtained at a cost C(a):

$$C(0) = 0, C'(.) > 0, C''(.) \ge 0$$

• Pollution reduces agent B's welfare by an amount D(z):

$$D(0) = 0, D'(.) > 0, D''(.) > 0$$

Unregulated situation

- Abatement is costly for agent A.
- In order to maximize his/her profit, agent A minimizes abatement costs
- a = 0, $z = \bar{z}$

- Abatement is costly for agent A.
- In order to maximize his/her profit, agent A minimizes abatement costs
- $a = 0, z = \bar{z}$

Optimal pollution

Optimal pollution

Optimal pollution

Optimum pollution is characterized by

$$\min_{z} C(\bar{z}-z) + D(z)$$

$$C'(\bar{z}-z)=D'(z)$$

Many polluters

- Assume now that there are n polluters (i = 1, ..., n)
- Each polluter faces abatement costs $C_i(\bar{z}_i z_i)$:

$$C_i(0) = 0, C'_i(.) > 0, C''_i(.) \ge 0$$
 for all i

• The damage depends on total emissions D(Z):

$$Z = \sum_{i=1}^{n} z_i, \ D(0) = 0, \ D'(.) > 0, \ D''(.) \ge 0$$

• The optimal pollution vector (z_1^*, \ldots, z_n^*) is solution of

$$\min_{z_1,\ldots,z_n}\sum_{i=1}^n C_i(\bar{z}_i-z_i)+D(Z)$$

which leads to
$$C'_1(\bar{z}_1 - z_1^*) = \cdots = C'_n(\bar{z}_n - z_n^*) = D'(Z^*)$$

Many polluters (cont'd)

Instruments to solve the externalities problem

- Three broad categories of instruments:
 - Setting standards or targets (command-and-control);
 - Pricing the externality (tax/subsidies);
 - Creating a market (permit market).
- Instruments commonly used are not necessarily economic instruments.
- Economic instruments are intended to correct the wrong signal conveyed by prices in the presence of externalities.
- Optimal pollution level is characterized by:
 - Equal marginal abatement costs among individual polluters (cost-effectiveness).
 - Marginal abatement cost equal to marginal damage (efficiency).
- Emission-based vs practice-based instruments.

Targets/Standards

- Pollution is too high: Impose emission targets or set standards.
- Centralized solution: The regulator sets targets or standards that agents must comply with.
- Probably the most used instrument.
- If each individual marginal abatement cost curve is known, it is theoretically possible to design differentiated pollution targets that are cost-effective.
- The implementation of the optimum requires to know Z^* , the optimal emission level.
- Emission targets vs process- or practice-standards.
- Uniform standards are cost-ineffective as soon as marginal abatement cost curves are different from one agent to the other.

Cost-(in)effectiveness of uniform standards

Cost-(in)effectiveness of uniform standards

Emission tax

- The price signal is wrong: Price the externality.
- Decentralized solution: Each agent decides how much pollutant s/he emits given the level of the tax. It is optimal for each agent to emit until the marginal abatement cost equals the tax t.
- Built-in cost-effectiveness: $C_1'(\bar{z}_1 z_1) = \cdots = C_n'(\bar{z}_n z_n) = t$.
- The implementation of the optimum requires to know the marginal damage $(t = D'(Z^*))$.
- In case of uncertainty, costs are under control. Total emissions are not.
- Control and monitoring costs.
- Use of tax revenues.
- Emission tax vs input tax.

Emission tax (cont'd)

Tradeable emission permits

- One market is missing and property rights are ill-defined: Create a market (and define property rights).
- Decentralized solution: Each agent decides how much s/he emits given the level of the current market price. It is optimal for each agent to emit until the marginal cost of emissions equals the market price p.
- Built-in cost-effectiveness: $C_1'(\bar{z}_1 z_1) = \cdots = C_n'(\bar{z}_n z_n) = p$.
- The implementation of the optimum requires to know the optimal emission level Z^* .
- In case of uncertainty, total emissions are under control. Costs are not.
- Transaction costs.
- The issue of the initial allocation of permits.
- Control and monitoring costs.

Tradeable emission permits

From theory to practice

- The most commonly used instruments are environmental standards.
- Very few examples of à la Pigou taxes (Landfill Tax and Aggregates Levy in the UK).
- Often, the level of taxes that may have an impact on the environment are loosely related to the marginal environmental damage (see Pearce, 2004).
- In the Climate Change negotiations, the 1992 EU energy/carbon tax failed, clearing the way to quantity- (rather than price-) based instruments.
- An example of tradeable emission permit market: The European Carbon Trading Scheme
 - Introduced in Directive 2003/87/EC, started in 2005.
 - Only the largest emitter (CO₂ emissions).

Trading emission permits (cont'd)

A closer look at abatement costs

- Micro-economic level:
 - Foregone income due to the re-allocation of resources necessary to reduce emissions (holding everything else constant).
 - Cost of adopting more environmental-friendly management practices.
 - Investment in "end-of-the-pipe" technologies.
- Macro-economic level:
 - Price impacts due to changes in production.
 - Structural change (entry/exit in the sector)
 - Incentives to invest in R&D.
 - Changes in international trade (leakage).
- Important distinction between marginal abatement costs and total abatement costs.

Research questions

- Economic mitigation potential in agriculture (≠ technical potential) depends on marginal abatement costs in agriculture relatively to marginal abatement costs in other sectors of the economy.
- How large can be the contribution of agriculture to the fulfilling of the Kyoto commitment?
- How much does it cost to farmers to meet a given abatement target?
- For a given level of incentive (tax), how much abatement farmers are willing to supply?
- How do marginal abatement costs vary across regions and types of farming?
- Where are located the highest economic mitigation potential?
- What are the implications for an optimal mitigation policy design?

A (short) review of modelling approaches

Computable general equilibrium models (e.g., Börhinger et al., 2005).

- Full price impacts endogenously modelled.
- Usually highly aggregated.

Partial equilibrium models (e.g. FAPRI; Saunders and Wreford, 2005).

- Description of the agricultural supply and demand.
 Agricultural price impacts are endogenously modelled.
- Other drivers (GDP, input prices) are exogenously determined.
- Disaggregated by commodity and countries/regions.

Cost-effectiveness sectoral approach (e.g. Klaasen et al., 2004).

- Detailed description of technologies within a sector.
 Optimal (cost-minimizing) technology mix is endogenous. Prices are generally exogenous.
- Disaggregated by sectors and countries.

A (short) review of modelling approaches (cont'd)

Regional agricultural models (McCarl, Schneider, 2001; Perez et al., 2003)

- Existing (and alternative) technologies are represented through constraints. Detailed description of the use of quasi-fixed inputs (land-use).
- Agricultural prices can be exogenous or endogenous (link with a partial equilibrium model).
- Disaggregated by commodities and regions (one farm per region).

Farm-type based models (De Cara et al., 2005)

- Description of the technology at the farm level (use of resources, input requirements, crop requirements, CAP-related constraints).
- Prices are usually exogenous (price-taker assumption).
- Highly disaggregated (several farm-types per region).

A (short) review of modelling approaches (cont'd)

	CGE	PE	CE	RAM	FTM	
Interactions between sources (substitution,		+	+	+	++	
technical feasibility)						
Heterogeneity of abatement costs		-	+	+	++	
Macro-economic impacts (impacts on	++	+	+	+	-	
prices, on up- and downstream industries,						
etc.)						

Some concluding remarks

- Importance of marginal abatement cost assessment to determine the optimal (at least cost-effective) level of abatement.
- Highly aggregated modelling approaches tend to overlook the heterogeneity of marginal abatement costs.
- GHG emissions from agriculture involve a variety of sources and gases (methane, nitrous oxide, CO₂): Importance of comprehensive emission accounting.

Introduction The model Results oncluding remarks

Part II

Economic Assessment

Economic Assessment: Outline

- 4 Introduction
- The model
 - Overview of the model
 - Emission accounting
 - Marginal abatement costs
- 6 Results
 - Emissions
 - EU-wide marginal abatement cost curves
 - Heterogeneity
 - Emission tax vs uniform abatement rate target
- Concluding remarks

Agricultural emissions: Background

- Agriculture accounts for about 10% of total EU-15 emissions.
- Agriculture is the main emitting sector for non-CO₂ GHGs (methane and nitrous oxide).
- Importance of interactions between methane and nitrous oxide sources (e.g., animal feeding, manure management).
- Agricultural emissions are not included in the ECTS.
- CAP reforms: Shift from income- to environment-oriented support (i.e., from the first to second pillar).

Sources of GHG emissions from agriculture (2001, EU-15)

Source	CO_2	CH ₄	N ₂ O	CO ₂ -eq	Share in	Share in
					ag emis	tot emis
	(Tg)	(Gg)	(Gg)	(Tg)	(%)	(%)
Agr. soils			635	188	46	5
Manure man.		2,156	70	70	17	2
Enteric ferm.		6,268		144	36	4
Rice cultivation		111		3	1	0
Total agriculture		8,535	704	405	100	10
Total all sources	3,384	15,695	1,111	4,073		100

Based on 2003 EU National Communication for the year 2001 using 2001 GWPs: $GWP_{CH_0}=23$, $GWP_{N_2O}=296$,

GHG emissions from agriculture by MS (1997 and 2001)

GHG emissions from agriculture (1990–2001, EU-15)

Agriculture vs CO₂ emissions (1990–2001, EU-15)

Overview of the model (De Cara et al, 2005)

A FT based, mathematical programming model of EU agricultural supply.

- Input data: FADN (about 60,000 surveyed farms in 101 regions of the EU-15): accountancy data, yields, area, type of farming, altitude zone
- Typology: 734 farm-types, covering annual crop and livestock farmers
- Exogenous variables: Total area, baseline livestock numbers, yields, prices, variable costs, CAP-related parameters, technical coefficients (agronomic, livestock feeding, emission coefficients, etc.)
- 734 independent models: MILP, maximization of total gross margin subject to crop area, CAP, livestock feeding, etc. constraints
- Calibration: Based on FADN 1997 data
- Output: Crop area mix, livestock numbers, animal feeding, emissions

Overview of the model (cont'd)

 The generic (annual) model is a mixed integer linear programming model for farm-type k:

$$\max_{\mathbf{X}_k} \pi_k(\mathbf{x}_k) = \mathbf{g}_k \cdot \mathbf{x}_k \tag{1}$$

s.t.
$$\mathbf{A}_k \cdot \mathbf{x}_k \leq \mathbf{z}_k$$
 (2)

$$\mathbf{x}_k \geq 0$$
 (3)

- \mathbf{g}_k is the *n*-vector of gross margins
- \mathbf{x}_k is the *n*-vector of producing activities
- \mathbf{A}_k is a $m \times n$ -matrix, describing the feasible production set

Key modelling features

- CAP measures: mandatory set aside, milk quotas, compensatory payments, intervention prices, etc.
- Area constraints: total area constraint, maximal area shares, balance between crops, between cereals and oilseeds, etc.
- Livestock demography (cattle): Demographic equilibrium between age classes, stable places constraints.
- **Livestock feeding:** Protein and energy requirements by animal categories, maximum ingested matter
- Manure management: Constant nitrogen excretion rates by animal categories, fixed shares of each management system as in the NCs to the UNFCCC
- Fertilizer use: Total fertilizer expenditures from FADN, split by crop for each farm type, assumption on a composite fertilizer price by crop and by country. Fixed per-hectare N input by crop and by farm-type.

Emission accounting

- Based on the IPCC Good Practice Guidelines emission factors linked to the relevant optimal levels of producing activities at the farm-type level
- Emission coverage consistent with the 2003 NC to the UNFCCC
- Country-differentiated emission factors if available in the NC to the UNFCCC; default IPCC emission factors otherwise

$$e_k = \sum_{l=1}^L \mathbf{f}_{k,l} \cdot \mathbf{x}_k$$

- e_k : Total emissions (in tCO₂eq) for farm-type k.
- $I = 1, \ldots, L$ sources
- $\mathbf{f}_{k,l}$: *n*-vector of emission factors for source l and farm-type k.

Emission coverage

Emission sources	Activity data	Linked to			
N ₂ O Agricultural soils					
Direct Emissions					
Use of synth. fertilizers	N fert. application	Crop area			
Manure application	N excr. by animals	Animal numbers			
Biological N fixation	Prod. of N-fixing crops	N-fixing crop area			
Crop residues	Reutil. of crop residues	Crop area			
Animal production	N excr. by graz. anim.	Animal numbers			
Indirect Emissions					
Atmospheric deposition	Total N application	Crop area and animal numbers			
Leaching and run-off	Total N application	Crop area and animal numbers			
N ₂ O Manure manag.	Animal numbers	Animal numbers			
CH ₄ Manure manag. (*)	Feed energy intake	Animal feeding and animal numbers			
CH ₄ Ent. fermentation ^(*)	Feed energy intake	Animal feeding and animal numbers			
CH ₄ Rice cultivation	Rice area	Rice area			
(*) Fruther discoursested into Dein, pattle non dain, pattle about most quine and					

^(*) Further disaggregated into: Dairy cattle, non-dairy cattle, sheep, goats, swine, and poultry.

Simulation of marginal abatement cost curves

- Two baseline runs:
 - CY-1997: Calibration year
 - RY-2001: Reference year, includes the changes in CAP policy between 1997 and 2001 ("Agenda 2000"), same dataset otherwise
- An emission tax is added to the objective function: from 0 to 100 EUR/tCO₂ For each farm-type k:

$$\max_{\mathbf{x}_k} \pi_k(\mathbf{x}_k) = \mathbf{g}_k \cdot \mathbf{x}_k - t.e_k \tag{4}$$

s.t.
$$\mathbf{A}_k \cdot \mathbf{x}_k \leq \mathbf{z}_k$$
 (5)

$$\mathbf{x}_k \geq 0 \tag{6}$$

$$e_k = \sum_{l=1}^{L} \mathbf{f}_{k,l} \cdot \mathbf{x}_k \tag{7}$$

Emissions

EU-wide marginal abatement cost curves

Observed vs modelled N2O and CH4 emissions

Change in emissions between 1997 and 2001

EU-wide marginal abatement cost curves

Abatement supply (EU-15)

EU-wide marginal abatement cost curves

Abatement supply (EU-15)

Marginal abatement costs: Discussion

- Total abatement depends on emission factors. Uncertainty and heterogeneity of IPCC emission factors.
- Only methane and nitrous oxide emissions (no carbon sequestration).
- Abatement results solely from changes in crop area allocation, animal feeding, and animal numbers:
 - No adoption of alternative management practices.
 - No "cleaning" technology.
 - Constant nitrogen application by crop and farm-type.
- No price impact (price-taker assumption).
- No structural changes (constant farmers population).
- No change in the macroeconomic and policy environment.

Implied abatement vs Kyoto target

- EU-wide marginal abatement cost curves
- Heterogeneity
 Emission tax vs uniform abatement rate target

Regional abatement rates

Distribution of regional abatement rates

- EU-wide marginal abatement cost curves
 - mission tax vs uniform abatement rate target

Distribution of regional abatement rates

- EU-wide marginal abatement cost curves
- Emission tax vs uniform abatement rate target

Distribution of abatement rates (cont'd)

EU-wide marginal abatement cost curves

Emission tax vs uniform abatement rate target

Cost-saving of an emission tax relative to a uniform abatement rate target

Abatement target	Total abatement	Marginal abatement cost		Cost-saving ratio
		Emission tax	Uniform quotas	
γ		t	$ar{\lambda}(\gamma)$	$ar{\lambda}(\gamma)/t(\gamma)$
(%)	$(MtCO_2eq)$	(EUR/tCO_2)	(EUR/tCO_2)	
4%	13.78	20.51	73.64	3.6
8%	27.56	55.84	122.66	2.2
12%	41.35	>100.00	169.62	<1.7

Concluding remarks

- The EEA (2004) projects that total EU abatement will fall short of the Kyoto target by 34 MtCO₂ with existing policies and measures
 ⇒ Estimated abatement costs indicate that agriculture could play an important role in bridging this gap.
- Heterogeneity of abatement costs is important both between and within regions
- Agricultural policies have a long history of uniform instruments

 ⇒ Given the heterogeneity of abatement costs, this would lead to significantly higher overall abatement costs
- Cost-effective vs efficient policy instruments: Uncertainty about climate change damage.
- Price impacts of mitigation policies?
- Carbon sequestration (soil, forestry) vs GHG abatement?